Ideomotor feedback control in a recurrent neural network
نویسندگان
چکیده
منابع مشابه
The Recurrent Control Neural Network
This paper presents our Recurrent Control Neural Network (RCNN), which is a model-based approach for a data-efficient modelling and control of reinforcement learning problems in discrete time. Its architecture is based on a recurrent neural network (RNN), which is extended by an additional control network. The latter has the particular task to learn the optimal policy. This method has the advan...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملMulti-Path Feedback Recurrent Neural Network for Scene Parsing
In this paper, we consider the scene parsing problem. We propose a novel Multi-Path Feedback recurrent neural network (MPF-RNN) to enhance the capability of RNNs on modeling long-range context information at multiple levels and better distinguish pixels that are easy to confuse in pixel-wise classification. In contrast to CNNs without feedback and RNNs with only a single feedback path, MPFRNN p...
متن کاملA Recurrent Neural Network Model for solving CCR Model in Data Envelopment Analysis
In this paper, we present a recurrent neural network model for solving CCR Model in Data Envelopment Analysis (DEA). The proposed neural network model is derived from an unconstrained minimization problem. In the theoretical aspect, it is shown that the proposed neural network is stable in the sense of Lyapunov and globally convergent to the optimal solution of CCR model. The proposed model has...
متن کاملA Recurrent Neural Network to Identify Efficient Decision Making Units in Data Envelopment Analysis
In this paper we present a recurrent neural network model to recognize efficient Decision Making Units(DMUs) in Data Envelopment Analysis(DEA). The proposed neural network model is derived from an unconstrained minimization problem. In theoretical aspect, it is shown that the proposed neural network is stable in the sense of lyapunov and globally convergent. The proposed model has a single-laye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biological Cybernetics
سال: 2015
ISSN: 0340-1200,1432-0770
DOI: 10.1007/s00422-015-0648-4